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Abstract.
Because the horizontal homogeneity assumption is violated in wakes flows, lidars face

difficulties when reconstructing wind fields. Further, small-scale turbulence which is prevalent
in wake flows causes Doppler spectrum widths to be broader than in the free stream. In this
study the Doppler peak variance is used as a detection parameter for wakes. A one month
long measurement campaign, where a continuous-wave lidar on a turbine has been exposed to
multiple wake situations, is used to test the detection capabilities. The results show that it is
possible to identify situation where a downstream turbine is in wake by comparing the peak
widths. The used lidar is inexpensive and brings instalments on every turbine within economical
reach. Thus, the information gathered by the lidars can be used for improved control at wind
farm level.

1. Introduction
Within a wind farm wakes from neighbouring turbines cannot be avoided; optimal wind farm
design can minimize these effects but never completely avoid them. Much effort has been put
into wake models as wind farm design tools (for an overview see [1]) and their validation, while
significant interest in measuring wake with the use of remote sensing devices originates from
optimal wind farm operation using wake redirection.

In this paper we want to present a novel method of detecting wakes by using a forward-
looking nacelle lidar. Information of the detection can be applied as input to wind farm based
yaw steering.

A very straight-forward approach to detect wakes was introduced by [2] of merely using wind
farm SCADA data. Aim was to reduce turbine fault activations that are caused by wakes. Based
on turbine data a wake pattern for each turbine was measured and used to decide in real time
whether a power reduction was due to a wake or an actual fault.

An alternative method to detect wakes was presented in [3]. The local wind speed and
turbulence intensity are derived from strain gauges or optical fibres. It was shown that this
method is capable of detecting differences of these quantities on the two sides of the rotor and
thus detect wakes. These theoretical methods have more recently been studied on scaled wind
turbines in a wind tunnel showing similar success of detecting the lateral position of upstream
wakes [4]. One drawback of this method is that to estimate wind speeds from blade bending
moments requires an aerodynamic model of the turbine. Wind farm operators often do not have
access to this kind of information.

http://creativecommons.org/licenses/by/3.0
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Remote sensing devices have shown potential at measuring wakes. Studies have shown
application to detecting aircraft tip vortex using ground-based [5] and on-board devices [6].
Further lidar ship wake detection has been studied in [7].

Most recently, interest has grown in the application of lidar systems to wind energy. [8, 9]
have used a scanning lidars to track the wake behind a turbine and measured wake deficit, width
and centre. In [10] two lidar systems were used to measure a wake immediately behind a turbine.
The study was extended in [11] to investigate the influence of the stability of the atmosphere
on wake recovery. However, these lidar systems are very complex and expensive and are not
realizable as commercial products for employment of several turbines within a wind farm.

Here we are presenting wake detection capabilities of an inexpensive, commercial lidar. It
is mounted on the nacelle and measures the incoming wind field and thus our interest lies in
detecting wakes in the inflow.

2. Experimental Setup and Motivation
The data analysed here have been gather during a one month long period in late 2015. A
WindEYE lidar by Windar Photonics A/S was mounted on a Vestas V52 at the Risø test site.
A schematic of the setup is shown in figure 1. The Vestas turbine, where the WindEYE was
mounted, was exposed to a wake of a smaller Nordtank 500kW turbine, see figure 2.

Figure 1. Setup schematic of the WindEYE
lidar on a wind turbine (α = 30 deg).

Figure 2. Overview of the Ris test site.

The lidar is mounted on the nacelle of a wind turbine and is looking upwind to measure
the incoming wind field. From the two measured line-of-sight velocities (vLOS,1 and vLOS,2) the
horizontal components (U and W ) of the wind can be estimated. In the process it is necessary
to make the following assumptions about the incoming wind field:

(i) The wind field is horizontally homogeneous and

(ii) no vertical components.

In situations where the turbine is exposed to a wake of an upstream turbine, assumption (i)
is heavily violated and thus the derived wind field information will be invalid. Thus a wake
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detection algorithm is necessary to identify conditions where the applied assumptions are not
valid.

3. Approach
The approach is based on the assumption that the lidar can detect enhanced turbulence, and that
this enables the system to determine whether one or more beams of the system are measuring
inside wakes. However, turbulence measured with a lidar is affected by the relatively long
effective measurement volume. The lidar effectively averages the wind speeds within the volume
[12].

Small-scale turbulence manifests itself in the width of the Doppler peak of the lidar, so
that the width is a measure of the small-scale turbulence [13, 14]. Specifically, it has been
shown that the width of the Doppler spectrum of a continuous-wave lidar is proportional to the
turbulence intensity within the probe volume of the instrument [15]. At the same time, it is
known that small-scale turbulence, which would be particularly responsible for increasing the
Doppler spectrum width, is prevalent in wakes [16, 15].

As a measure of the Doppler spectrum width we use the 2nd central statistical moment of
the peak. The first moment is defined as the centroid. In order to reduce noise in the width
estimation a running average filter with a size of 600s has been used.

4. Results
In this section two periods are presented: one with a wake situation and one without a wake
situation.

The results for the first period are shown in figure 3. The top panel shows the difference in
peak variance between beam 1 and 2. Two vertical lines at 20 and -20 are also plotted. Large
differences indicate enhanced turbulence levels, and thus a wake, in one of the beams. The
centre panel shows the yaw position of the two turbines including an indication of the wake
sector. The bottom panel shows the power production of the wake-emitting turbine.

Figure 3. Top: difference of peak variance between beam 1 and 2. Centre: yaw position of
both turbines. Bottom: Power production of Nordtank turbine.

It can be seen that as soon as the upstream turbine is expected to emit a wake on the
downstream turbine (based on their yaw positions), there is a sudden jump in the difference of
the peak variances. This is shown especially after Dec 23rd 12AM, where a negative spike in
variance difference can be seen as soon as a wake position is entered. This means that a wake on
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the left half of the rotor is detected, which agrees with the yaw position showing higher values
than the wake direction (195 deg). Similarly, the period around the Dec 24th 12AM shows a
wake on the right half of the rotor (positive difference in peak variance), which is also confirmed
by the turbine yaw position. Hence, the sign of the peak variance difference can detect a wake
situation and show which half of the rotor is affected.

Figure 4 shows the results for a period where according to the yaw positions no wake situation
is expected. When looking at the difference in peak variance, it can be seen that at all time
the values fluctuate around zero. Contrarily to the wake situation no sudden deviation in peak
variance difference can be seen and so no wakes are predicted by the lidar.

Figure 4. Top: difference of peak variance between beam 1 and 2. Centre: yaw position of
both turbines. Bottom: Power production of Nordtank turbine.

5. Conclusion
This study investigated the wake detection possibilities of a nacelle lidar. It was shown that
by comparing the Doppler peak width of the two line-of-sight velocities wake situations can be
predicted. A suitable measure of the peak width is the 2nd central statistical moment. The sign
of the peak width difference indicates which side of the turbine is exposed to a wake. A challenge
remains in setting appropriate thresholds for the difference of peak variances. Such a limit is
probably dependent on ambient turbulence levels and future experiments will be conducted to
test the algorithm in different turbulence levels.

Wake detection is necessary to identify where the assumption used for wind field
reconstruction are violated. Further, information about the position of wakes is very valuable
information and can be exploited for wind farm control.
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